博士後研究員:郭婉如 Dr. Wan-Jung Kuo

Email: wanjungk2@g.ntu.edu.tw

 
學歷

Ph.D. Dept. of Physics, University of Southern California, Los Angeles, CA (2012)

美國南加州大學物理系博士

M.S.  Dept. of Physics, National Taiwan University, Taipei, Taiwan (2004)

國立臺灣大學物理系碩士

B.S.  Dept. of Physics, National Taiwan University, Taipei, Taiwan (2002)

國立臺灣大學物理系學士

經歷
  • Science and Technology Research Instiute for DE-Carbonization(STRIDE-C), NTU, Taiwan                                  國立臺灣大學新碳勘科技研究中心
           Postdoctoral Researcher 博士後研究員 2023/1 – 現今
  • Center for Advanced Model Research Development and Applications(CAMRDA), NCU, Taiwan                         國立中央大學高等模式研發應用中心
           Postdoctoral Researcher 博士後研究員 2017/7 – 2023/1
  • Institute for Physics Research and Technology & Ames lab, Iowa State University, USA    美國愛荷華州立大學物理與技術研究所&埃姆斯國家實驗室
            Postdoctoral Research Associate 博士後研究員 2012 – 2014
  • University of Southern California, USA                                                                                                                                                                       美國南加州大學
            Research Assistant 研究助理 2007 – 2012
  • Department of Physics and Astronomy, University of Southern California, USA                                                                    美國南加州大學物理與天文學系
            Teaching Assistant 助教 2005 – 2010
專業領域

          Coupled thermal-hydrology-mechanics-chemical processes numerical subsurface model developing

          Theoretical, mathematical, and numerical analysis

         地下水與地表熱-水-力-化耦合環境模式研究與發展、理論物理數學分析

獲獎榮譽:
        I.   CAMS Graduate Student Prize for Excellence in Research with a Substantial

            Mathematical Component                                                                                                                                                                                                                                    University of Southern California, 2012

       II. WiSE (Women in Science and Engineering) Graduate Fellowship
           University of Southern California, 2005-2007

      III. Presidential Award
           National Taiwan University, 2001-2002

      IV. Tai Yun-Kuei Scholarship
           National Taiwan University, 2001-2002

      V. Dr. Huang Chen-Lin Memorial Scholarship
           National Taiwan University, 2000-2001

 

期刊論文
  1. Quantum Adiabatic Brachistochrone
    A.T. Rezakhani, Wan-Jung Kuo, A. Hamma, D.A. Lidar, and P. Zanardi, Phys. Rev. Lett.
    103, 080502 (2009)
    DOI:10.1103/PhysRevLett.103.080502 (IF: 7.328 ; JIF Rank in SCIE: 6/71, Q1)
    In this paper, we formulated a general time-optimal strategy which in principal can optimize
    any quantum adiabatic algorithm for which the gap is known or can be estimated. The time-optimal
    path obtained by this strategy is called Quantum Adiabatic Brachistochrone (QAB)
    and was shown to yield better algorithmic performance than the conventional linear interpolation
    path. In addition, we found that AQC can be recast naturally into a differential-geometric
    framework. Specifically, a given family of physically controllable Hamiltonians can be equipped
    with a Riemannian structure, along with a metric induced by the adiabatic evolution. Therefore,
    the problem of finding QAB (the time-optimal path) for a given computational problem
    is equivalent to finding the geodesic (the shortest path on the Riemannian manifold). This
    geometric approach not only gives new insight into AQC but also allows us to apply existing
    powerful tools of differential geometry to it.                                                                                                                                                                                                              
  2. Quadratic Dynamical Decoupling: Universality Proof and Error Analysis
    Wan-Jung Kuo
    and Daniel A. Lidar, Phys. Rev. A 84, 042329 (2011)
    DOI:10.1103/PhysRevA.84.042329 (IF: 2.878; JIF Rank in SCIE: 10/79, Q1)
    Quadratic DD (QDD) which concatenates two layers of UDD is currently a near-optimal pulse
    sequence for suppression of one qubit general decoherence. Complete analytical proof of the
    actual performance of QDD was absent and was challenging due to the non-equidistant UDD
    (QDD’s recursive unit) pulse intervals which makes the analysis non-trivial and difficult. In
    this work, we provided a rigorous comprehensive proof of the actual performance of the generalized
    version of QDD, where the orders of its inner and outer UDD layers, N1 and N2, can
    be different. We analyzed thoroughly how each UDD layer interferes with each other, which
    consequently identifies the region of N1 and N2 that QDD scheme cannot achieve its full suppression
    potential. Moreover, the various interesting performance effects related to the parities
    and relative magnitudes of N1 and N2 are found. Our proof also indicates that QDD sequence
    is also a universal DD sequence for the generic bath with high-frequency dominated spectrum,
    namely, its near-optimal performance is insensitive to the details of the noise environment.                                                                                                                    
  3. Universality Proof and Error Analysis of Nested Uhrig Dynamical Decoupling
    Wan-Jung Kuo
    , G. A. Paz-Silva, G. Quiroz and Daniel A. Lidar, J. Math. Phys. 53, 122207
    (2012)
    DOI:10.1063/1.4769382 (IF: 1.296; JIF Rank in SCIE: 24/55, Q2)
    NUDD scheme, which nests multiple layers of UDD sequences, is a much more efficient (though
    far from optimal) scheme, compared to other known DD schemes, for general multi-qubit decoherence
    suppression. In this paper, the universality and performance of NUDD sequence
    with ”general pulses” is rigorously proven and studied with compact and abstract formulation.
    Moreover, the single-axis error type in our QDD paper is also generalized to a more general
    concept. The explicit formula for the decoupling order of each error type is given, which shows
    explicitly how the parities and relative magnitudes of UDD orders affect the suppression of
    different types of errors. We also discover that the error cancellation mechanism relates to the
    group structure underneath the error types.                                                                                                                                                                                              
  4. HM and THM interactions in bentonite engineered barriers for nuclear waste disposal
    Antonio Gens, J. Alcoverro, Radim Blaheta, Martin Hasal, Zdenˇek Michalec, Yusuke Takayama,
    Changsoo Lee, Jaewon Lee, Geon Young Kim, Chia-Wei Kuo,Wan-Jung Kuo, Chung-Yi Lin,
    Int. J. Rock Mech. Min. Sci. 137,104572 (2021)
    DOI:10.1016/j.ijrmms.2020.104572 (IF: 7.135; JIF Rank in SCIE: 1/41, Q1)